Logo Search packages:      
Sourcecode: w3af version File versions  Download package

util.py

# Natural Language Toolkit: Utility functions
#
# Copyright (C) 2001-2009 NLTK Project
# Author: Steven Bird <sb@csse.unimelb.edu.au>
# URL: <http://www.nltk.org/>
# For license information, see LICENSE.TXT

import locale
import re
import types
import textwrap
import pydoc
import bisect
import os

from itertools import islice, chain
from pprint import pprint
from nltk.compat import defaultdict

from nltk.internals import Deprecated, slice_bounds

######################################################################
# Short usage message
######################################################################

def usage(obj, selfname='self'):
    import inspect
    str(obj) # In case it's lazy, this will load it.
    
    if not isinstance(obj, (types.TypeType, types.ClassType)):
        obj = obj.__class__

    print '%s supports the following operations:' % obj.__name__
    for (name, method) in sorted(pydoc.allmethods(obj).items()):
        if name.startswith('_'): continue
        if getattr(method, '__deprecated__', False): continue
            
        args, varargs, varkw, defaults = inspect.getargspec(method)
        if (args and args[0]=='self' and
            (defaults is None or len(args)>len(defaults))):
            args = args[1:]
            name = '%s.%s' % (selfname, name)
        argspec = inspect.formatargspec(
            args, varargs, varkw, defaults)
        print textwrap.fill('%s%s' % (name, argspec),
                            initial_indent='  - ',
                            subsequent_indent=' '*(len(name)+5))

##########################################################################
# IDLE
##########################################################################

def in_idle():
    """
    @rtype: C{boolean}
    @return: true if this function is run within idle.  Tkinter
    programs that are run in idle should never call C{Tk.mainloop}; so
    this function should be used to gate all calls to C{Tk.mainloop}.

    @warning: This function works by checking C{sys.stdin}.  If the
    user has modified C{sys.stdin}, then it may return incorrect
    results.
    """
    import sys, types
    return (type(sys.stdin) == types.InstanceType and \
            sys.stdin.__class__.__name__ == 'PyShell')

##########################################################################
# PRETTY PRINTING
##########################################################################

def pr(data, start=0, end=None):
    """
    Pretty print a sequence of data items

    @param data: the data stream to print
    @type data: C{sequence} or C{iterator}
    @param start: the start position
    @type start: C{int}
    @param end: the end position
    @type end: C{int}
    """
    pprint(list(islice(data, start, end)))

# shouldn't this use textwrap.wrap()?
def print_string(s, width=70):
    """
    Pretty print a string, breaking lines on whitespace

    @param s: the string to print, consisting of words and spaces
    @type s: C{string}
    @param width: the display width
    @type width: C{int}
    """
    while s:
        s = s.strip()
        try:
            i = s[:width].rindex(' ')
        except ValueError:
            print s
            return
        print s[:i]
        s = s[i:]

def tokenwrap(tokens, separator=" ", width=70):
    """
    Pretty print a list of text tokens, breaking lines on whitespace

    @param tokens: the tokens to print
    @type tokens: C{list}
    @param separator: the string to use to separate tokens
    @type separator: C{str}
    @param width: the display width (default=70)
    @type width: C{int}
    """
    
    return '\n'.join(textwrap.wrap(separator.join(tokens), width=width))


##########################################################################
# Indexing
##########################################################################

class Index(defaultdict):
    
    def __init__(self, pairs):
        defaultdict.__init__(self, list)
        for key, value in pairs:
            self[key].append(value)


######################################################################
## Regexp display (thanks to David Mertz)
######################################################################

def re_show(regexp, string, left="{", right="}"):
    """
    Search C{string} for substrings matching C{regexp} and wrap
    the matches with braces.  This is convenient for learning about
    regular expressions.

    @param regexp: The regular expression.
    @type regexp: C{string}
    @param string: The string being matched.
    @type string: C{string}
    @param left: The left delimiter (printed before the matched substring)
    @type left: C{string}
    @param right: The right delimiter (printed after the matched substring)
    @type right: C{string}
    @rtype: C{string}
    @return: A string with markers surrounding the matched substrings.
    """
    print re.compile(regexp, re.M).sub(left + r"\g<0>" + right, string.rstrip())


##########################################################################
# READ FROM FILE OR STRING
##########################################################################

# recipe from David Mertz
def filestring(f):
    if hasattr(f, 'read'):
        return f.read()
    elif isinstance(f, basestring):
        return open(f).read()
    else:
        raise ValueError, "Must be called with a filename or file-like object"

##########################################################################
# Breadth-First Search
##########################################################################

def breadth_first(tree, children=iter, depth=-1, queue=None):
    """Traverse the nodes of a tree in breadth-first order.
    (No need to check for cycles.)
    The first argument should be the tree root;
    children should be a function taking as argument a tree node
    and returning an iterator of the node's children.
    """
    if queue == None:
        queue = []
    queue.append(tree)
    
    while queue:
        node = queue.pop(0)
        yield node
        if depth != 0:
            try:
                queue += children(node)
                depth -= 1
            except:
                pass
        
##########################################################################
# Guess Character Encoding
##########################################################################

# adapted from io.py in the docutils extension module (http://docutils.sourceforge.net)
# http://www.pyzine.com/Issue008/Section_Articles/article_Encodings.html

def guess_encoding(data):
    """
    Given a byte string, attempt to decode it.
    Tries the standard 'UTF8' and 'latin-1' encodings,
    Plus several gathered from locale information.

    The calling program *must* first call::

        locale.setlocale(locale.LC_ALL, '')

    If successful it returns C{(decoded_unicode, successful_encoding)}.
    If unsuccessful it raises a C{UnicodeError}.
    """
    successful_encoding = None
    # we make 'utf-8' the first encoding
    encodings = ['utf-8']
    #
    # next we add anything we can learn from the locale
    try:
        encodings.append(locale.nl_langinfo(locale.CODESET))
    except AttributeError:
        pass
    try:
        encodings.append(locale.getlocale()[1])
    except (AttributeError, IndexError):
        pass
    try:
        encodings.append(locale.getdefaultlocale()[1])
    except (AttributeError, IndexError):
        pass
    #
    # we try 'latin-1' last
    encodings.append('latin-1')
    for enc in encodings:
        # some of the locale calls 
        # may have returned None
        if not enc:
            continue
        try:
            decoded = unicode(data, enc)
            successful_encoding = enc

        except (UnicodeError, LookupError):
            pass
        else:
            break
    if not successful_encoding:
         raise UnicodeError(
        'Unable to decode input data.  Tried the following encodings: %s.'
        % ', '.join([repr(enc) for enc in encodings if enc]))
    else:
         return (decoded, successful_encoding)


##########################################################################
# Invert a dictionary
##########################################################################

def invert_dict(d):
    from nltk.compat import defaultdict
    inverted_dict = defaultdict(list)
    for key in d:
        for term in d[key]:
            inverted_dict[term].append(key)
    return inverted_dict


##########################################################################
# HTML Cleaning
##########################################################################

from HTMLParser import HTMLParser
skip = ['script', 'style']   # non-nesting tags to skip

class HTMLCleaner(HTMLParser):
    def __init__(self):
        self.reset()
        self.fed = []
        self._flag = True
    def handle_data(self, d):
        if self._flag:
            self.fed.append(d)
    def handle_starttag(self, tag, attrs):
        if tag in skip:
            self._flag = False
    def handle_endtag(self, tag):
        if tag in skip:
            self._flag = True
    def clean_text(self):
        return ''.join(self.fed)

def clean_html(html):
    """
    Remove HTML markup from the given string.

    @param html: the HTML string to be cleaned
    @type html: C{string}
    @rtype: C{string}
    """
    
    cleaner = HTMLCleaner()
    cleaner.feed(html)
    return cleaner.clean_text()

def clean_url(url):
   from urllib import urlopen
   html = urlopen(url).read()
   return clean_html(html)

##########################################################################
# Ngram iteration
##########################################################################

# add a flag to pad the sequence so we get peripheral ngrams?

def ngrams(sequence, n, pad_left=False, pad_right=False, pad_symbol=None):
    """
    A utility that produces a sequence of ngrams from a sequence of items.
    For example:
    
    >>> ngrams([1,2,3,4,5], 3)
    [(1, 2, 3), (2, 3, 4), (3, 4, 5)]
    
    Use ingram for an iterator version of this function.  Set pad_left
    or pad_right to true in order to get additional ngrams:
    
    >>> ngrams([1,2,3,4,5], 2, pad_right=True)
    [(1, 2), (2, 3), (3, 4), (4, 5), (5, None)]

    @param sequence: the source data to be converted into ngrams
    @type sequence: C{sequence} or C{iterator}
    @param n: the degree of the ngrams
    @type n: C{int}
    @param pad_left: whether the ngrams should be left-padded
    @type pad_left: C{boolean}
    @param pad_right: whether the ngrams should be right-padded
    @type pad_right: C{boolean}
    @param pad_symbol: the symbol to use for padding (default is None)
    @type pad_symbol: C{any}
    @return: The ngrams
    @rtype: C{list} of C{tuple}s
    """

    if pad_left:
        sequence = chain((pad_symbol,) * (n-1), sequence)
    if pad_right:
        sequence = chain(sequence, (pad_symbol,) * (n-1))
    sequence = list(sequence)
    
    count = max(0, len(sequence) - n + 1)
    return [tuple(sequence[i:i+n]) for i in range(count)]

def bigrams(sequence, **kwargs):
    """
    A utility that produces a sequence of bigrams from a sequence of items.
    For example:
    
    >>> bigrams([1,2,3,4,5])
    [(1, 2), (2, 3), (3, 4), (4, 5)]
    
    Use ibigrams for an iterator version of this function.

    @param sequence: the source data to be converted into bigrams
    @type sequence: C{sequence} or C{iterator}
    @return: The bigrams
    @rtype: C{list} of C{tuple}s
    """
    return ngrams(sequence, 2, **kwargs)

def trigrams(sequence, **kwargs):
    """
    A utility that produces a sequence of trigrams from a sequence of items.
    For example:
    
    >>> trigrams([1,2,3,4,5])
    [(1, 2, 3), (2, 3, 4), (3, 4, 5)]
    
    Use itrigrams for an iterator version of this function.

    @param sequence: the source data to be converted into trigrams
    @type sequence: C{sequence} or C{iterator}
    @return: The trigrams
    @rtype: C{list} of C{tuple}s
    """
    return ngrams(sequence, 3, **kwargs)

def ingrams(sequence, n, pad_left=False, pad_right=False, pad_symbol=None):
    """
    A utility that produces an iterator over ngrams generated from a sequence of items.
    
    For example:
    
    >>> list(ingrams([1,2,3,4,5], 3))
    [(1, 2, 3), (2, 3, 4), (3, 4, 5)]
    
    Use ngrams for a list version of this function.  Set pad_left
    or pad_right to true in order to get additional ngrams:
    
    >>> list(ingrams([1,2,3,4,5], 2, pad_right=True))
    [(1, 2), (2, 3), (3, 4), (4, 5), (5, None)]

    @param sequence: the source data to be converted into ngrams
    @type sequence: C{sequence} or C{iterator}
    @param n: the degree of the ngrams
    @type n: C{int}
    @param pad_left: whether the ngrams should be left-padded
    @type pad_left: C{boolean}
    @param pad_right: whether the ngrams should be right-padded
    @type pad_right: C{boolean}
    @param pad_symbol: the symbol to use for padding (default is None)
    @type pad_symbol: C{any}
    @return: The ngrams
    @rtype: C{iterator} of C{tuple}s
    """

    sequence = iter(sequence)
    if pad_left:
        sequence = chain((pad_symbol,) * (n-1), sequence)
    if pad_right:
        sequence = chain(sequence, (pad_symbol,) * (n-1))

    history = []
    while n > 1:
        history.append(sequence.next())
        n -= 1
    for item in sequence:
        history.append(item)
        yield tuple(history)
        del history[0]
        
def ibigrams(sequence, **kwargs):
    """
    A utility that produces an iterator over bigrams generated from a sequence of items.
    
    For example:
    
    >>> list(ibigrams([1,2,3,4,5]))
    [(1, 2), (2, 3), (3, 4), (4, 5)]
    
    Use bigrams for a list version of this function.

    @param sequence: the source data to be converted into bigrams
    @type sequence: C{sequence} or C{iterator}
    @return: The bigrams
    @rtype: C{iterator} of C{tuple}s
    """

    for item in ingrams(sequence, 2, **kwargs):
        yield item
        
def itrigrams(sequence, **kwargs):
    """
    A utility that produces an iterator over trigrams generated from a sequence of items.
    
    For example:
    
    >>> list(itrigrams([1,2,3,4,5])
    [(1, 2, 3), (2, 3, 4), (3, 4, 5)]
    
    Use trigrams for a list version of this function.

    @param sequence: the source data to be converted into trigrams
    @type sequence: C{sequence} or C{iterator}
    @return: The trigrams
    @rtype: C{iterator} of C{tuple}s
    """

    for item in ingrams(sequence, 3, **kwargs):
        yield item
        
##########################################################################
# Ordered Dictionary
##########################################################################

class OrderedDict(dict):
    def __init__(self, data=None, **kwargs):
        self._keys = self.keys(data, kwargs.get('keys'))
        self._default_factory = kwargs.get('default_factory')
        if data is None:
            dict.__init__(self)
        else:
            dict.__init__(self, data)

    def __delitem__(self, key):
        dict.__delitem__(self, key)
        self._keys.remove(key)
        
    def __getitem__(self, key):
        try:
            return dict.__getitem__(self, key)
        except KeyError:
            return self.__missing__(key)

    def __iter__(self):
        return (key for key in self.keys())
    
    def __missing__(self, key):
        if not self._default_factory and key not in self._keys:
            raise KeyError()
        else:
            return self._default_factory()
        
    def __setitem__(self, key, item):
        dict.__setitem__(self, key, item)
        if key not in self._keys:
            self._keys.append(key)
        
    def clear(self):
        dict.clear(self)
        self._keys.clear()

    def copy(self):
        d = dict.copy(self)
        d._keys = self._keys
        return d

    def items(self):
        return zip(self.keys(), self.values())

    def keys(self, data=None, keys=None):
        if data:
            if keys:
                assert isinstance(keys, list)
                assert len(data) == len(keys)
                return keys
            else:
                assert isinstance(data, dict) or \
                       isinstance(data, OrderedDict) or \
                       isinstance(data, list)
                if isinstance(data, dict) or isinstance(data, OrderedDict):
                    return data.keys()
                elif isinstance(data, list):
                    return [key for (key, value) in data]
        elif '_keys' in self.__dict__:
            return self._keys
        else:
            return []

    def popitem(self):
        if self._keys:
            key = self._keys.pop()
            value = self[key]
            del self[key]
            return (key, value)
        else:
            raise KeyError()

    def setdefault(self, key, failobj=None):
        dict.setdefault(self, key, failobj)
        if key not in self._keys:
            self._keys.append(key)

    def update(self, data):
        dict.update(self, data)
        for key in self.keys(data):
            if key not in self._keys:
                self._keys.append(key)

    def values(self):
        return map(self.get, self._keys)

######################################################################
# Lazy Sequences
######################################################################

00566 class AbstractLazySequence(object):
    """
    An abstract base class for read-only sequences whose values are
    computed as needed.  Lazy sequences act like tuples -- they can be
    indexed, sliced, and iterated over; but they may not be modified.

    The most common application of lazy sequences in NLTK is for
    I{corpus view} objects, which provide access to the contents of a
    corpus without loading the entire corpus into memory, by loading
    pieces of the corpus from disk as needed.
    
    The result of modifying a mutable element of a lazy sequence is
    undefined.  In particular, the modifications made to the element
    may or may not persist, depending on whether and when the lazy
    sequence caches that element's value or reconstructs it from
    scratch.

    Subclasses are required to define two methods:
    
      - L{__len__()}
      - L{iterate_from()}.
    """
00588     def __len__(self):
        """
        Return the number of tokens in the corpus file underlying this
        corpus view.
        """
        raise NotImplementedError('should be implemented by subclass')
    
00595     def iterate_from(self, start):
        """
        Return an iterator that generates the tokens in the corpus
        file underlying this corpus view, starting at the token number
        C{start}.  If C{start>=len(self)}, then this iterator will
        generate no tokens.
        """
        raise NotImplementedError('should be implemented by subclass')
    
00604     def __getitem__(self, i):
        """
        Return the C{i}th token in the corpus file underlying this
        corpus view.  Negative indices and spans are both supported.
        """
        if isinstance(i, slice):
            start, stop = slice_bounds(self, i)
            return LazySubsequence(self, start, stop)
        else:
            # Handle negative indices
            if i < 0: i += len(self)
            if i < 0: raise IndexError('index out of range')
            # Use iterate_from to extract it.
            try:
                return self.iterate_from(i).next()
            except StopIteration:
                raise IndexError('index out of range')

00622     def __iter__(self):
        """Return an iterator that generates the tokens in the corpus
        file underlying this corpus view."""
        return self.iterate_from(0)

00627     def count(self, value):
        """Return the number of times this list contains C{value}."""
        return sum(1 for elt in self if elt==value)
    
00631     def index(self, value, start=None, stop=None):
        """Return the index of the first occurance of C{value} in this
        list that is greater than or equal to C{start} and less than
        C{stop}.  Negative start & stop values are treated like negative
        slice bounds -- i.e., they count from the end of the list."""
        start, stop = slice_bounds(self, slice(start, stop))
        for i, elt in enumerate(islice(self, start, stop)):
            if elt == value: return i+start
        raise ValueError('index(x): x not in list')

00641     def __contains__(self, value):
        """Return true if this list contains C{value}."""
        return bool(self.count(value))
    
00645     def __add__(self, other):
        """Return a list concatenating self with other."""
        return LazyConcatenation([self, other])
    
00649     def __radd__(self, other):
        """Return a list concatenating other with self."""
        return LazyConcatenation([other, self])
    
00653     def __mul__(self, count):
        """Return a list concatenating self with itself C{count} times."""
        return LazyConcatenation([self] * count)
    
00657     def __rmul__(self, count):
        """Return a list concatenating self with itself C{count} times."""
        return LazyConcatenation([self] * count)

    _MAX_REPR_SIZE = 60
00662     def __repr__(self):
        """
        @return: A string representation for this corpus view that is
        similar to a list's representation; but if it would be more
        than 60 characters long, it is truncated.
        """
        pieces = []
        length = 5
        for elt in self:
            pieces.append(repr(elt))
            length += len(pieces[-1]) + 2
            if length > self._MAX_REPR_SIZE and len(pieces) > 2:
                return '[%s, ...]' % ', '.join(pieces[:-1])
        else:
            return '[%s]' % ', '.join(pieces)

00678     def __cmp__(self, other):
        """
        Return a number indicating how C{self} relates to other.

          - If C{other} is not a corpus view or a C{list}, return -1.
          - Otherwise, return C{cmp(list(self), list(other))}.

        Note: corpus views do not compare equal to tuples containing
        equal elements.  Otherwise, transitivity would be violated,
        since tuples do not compare equal to lists.
        """
        if not isinstance(other, (AbstractLazySequence, list)): return -1
        return cmp(list(self), list(other))

00692     def __hash__(self):
        """
        @raise ValueError: Corpus view objects are unhashable.
        """
        raise ValueError('%s objects are unhashable' %
                         self.__class__.__name__)


00700 class LazySubsequence(AbstractLazySequence):
    """
    A subsequence produced by slicing a lazy sequence.  This slice
    keeps a reference to its source sequence, and generates its values
    by looking them up in the source sequence.
    """

    MIN_SIZE = 100
    """The minimum size for which lazy slices should be created.  If
       C{LazySubsequence()} is called with a subsequence that is
       shorter than C{MIN_SIZE}, then a tuple will be returned
       instead."""
    
00713     def __new__(cls, source, start, stop):
        """
        Construct a new slice from a given underlying sequence.  The
        C{start} and C{stop} indices should be absolute indices --
        i.e., they should not be negative (for indexing from the back
        of a list) or greater than the length of C{source}.
        """
        # If the slice is small enough, just use a tuple.
        if stop-start < cls.MIN_SIZE:
            return list(islice(source.iterate_from(start), stop-start))
        else:
            return object.__new__(cls, source, start, stop)
        
    def __init__(self, source, start, stop):
        self._source = source
        self._start = start
        self._stop = stop

00731     def __len__(self):
        return self._stop - self._start

00734     def iterate_from(self, start):
        return islice(self._source.iterate_from(start+self._start),
                      max(0, len(self)-start))


00739 class LazyConcatenation(AbstractLazySequence):
    """
    A lazy sequence formed by concatenating a list of lists.  This
    underlying list of lists may itself be lazy.  C{LazyConcatenation}
    maintains an index that it uses to keep track of the relationship
    between offsets in the concatenated lists and offsets in the
    sublists.
    """
    def __init__(self, list_of_lists):
        self._list = list_of_lists
        self._offsets = [0]

00751     def __len__(self):
        if len(self._offsets) <= len(self._list):
            for tok in self.iterate_from(self._offsets[-1]): pass
        return self._offsets[-1]

00756     def iterate_from(self, start_index):
        if start_index < self._offsets[-1]:
            sublist_index = bisect.bisect_right(self._offsets, start_index)-1
        else:
            sublist_index = len(self._offsets)-1

        index = self._offsets[sublist_index]

        # Construct an iterator over the sublists.
        if isinstance(self._list, AbstractLazySequence):
            sublist_iter = self._list.iterate_from(sublist_index)
        else:
            sublist_iter = islice(self._list, sublist_index, None)

        for sublist in sublist_iter:
            if sublist_index == (len(self._offsets)-1):
                assert index+len(sublist) >= self._offsets[-1], (
                        'offests not monotonic increasing!')
                self._offsets.append(index+len(sublist))
            else:
                assert self._offsets[sublist_index+1] == index+len(sublist), (
                        'inconsistent list value (num elts)')
                
            for value in sublist[max(0, start_index-index):]:
                yield value

            index += len(sublist)
            sublist_index += 1


00786 class LazyMap(AbstractLazySequence):
    """
    A lazy sequence whose elements are formed by applying a given
    function to each element in one or more underlying lists.  The
    function is applied lazily -- i.e., when you read a value from the
    list, C{LazyMap} will calculate that value by applying its
    function to the underlying lists' value(s).  C{LazyMap} is
    essentially a lazy version of the Python primitive function
    C{map}.  In particular, the following two expressions are
    equivalent:

        >>> map(f, sequences...)
        >>> list(LazyMap(f, sequences...))

    Like the Python C{map} primitive, if the source lists do not have
    equal size, then the value C{None} will be supplied for the
    'missing' elements.
    
    Lazy maps can be useful for conserving memory, in cases where
    individual values take up a lot of space.  This is especially true
    if the underlying list's values are constructed lazily, as is the
    case with many corpus readers.

    A typical example of a use case for this class is performing
    feature detection on the tokens in a corpus.  Since featuresets
    are encoded as dictionaries, which can take up a lot of memory,
    using a C{LazyMap} can significantly reduce memory usage when
    training and running classifiers.
    """
00815     def __init__(self, function, *lists, **config):
        """
        @param function: The function that should be applied to
            elements of C{lists}.  It should take as many arguments
            as there are C{lists}.
        @param lists: The underlying lists.
        @kwparam cache_size: Determines the size of the cache used
            by this lazy map.  (default=5)
        """
        if not lists:
            raise TypeError('LazyMap requires at least two args')
        
        self._lists = lists
        self._func = function
        self._cache_size = config.get('cache_size', 5)
        if self._cache_size > 0:
            self._cache = {}
        else:
            self._cache = None
            
        # If you just take bool() of sum() here _all_lazy will be true just
        # in case n >= 1 list is an AbstractLazySequence.  Presumably this
        # isn't what's intended.
        self._all_lazy = sum(isinstance(lst, AbstractLazySequence) 
                             for lst in lists) == len(lists)

00841     def iterate_from(self, index):
        # Special case: one lazy sublist
        if len(self._lists) == 1 and self._all_lazy:
            for value in self._lists[0].iterate_from(index):
                yield self._func(value)
            return
        
        # Special case: one non-lazy sublist
        elif len(self._lists) == 1:
            while True:
                try: yield self._func(self._lists[0][index])
                except IndexError: return
                index += 1

        # Special case: n lazy sublists
        elif self._all_lazy:
            iterators = [lst.iterate_from(index) for lst in self._lists]
            while True:
                elements = []
                for iterator in iterators:
                    try: elements.append(iterator.next())
                    except: elements.append(None)
                if elements == [None] * len(self._lists):
                    return
                yield self._func(*elements)
                index += 1

        # general case
        else:
            while True:
                try: elements = [lst[index] for lst in self._lists]
                except IndexError:
                    elements = [None] * len(self._lists)
                    for i, lst in enumerate(self._lists):
                        try: elements[i] = lst[index]
                        except IndexError: pass
                    if elements == [None] * len(self._lists):
                        return
                yield self._func(*elements)
                index += 1

00882     def __getitem__(self, index):
        if isinstance(index, slice):
            sliced_lists = [lst[index] for lst in self._lists]
            return LazyMap(self._func, *sliced_lists)
        else:
            # Handle negative indices
            if index < 0: index += len(self)
            if index < 0: raise IndexError('index out of range')
            # Check the cache
            if self._cache is not None and index in self._cache:
                return self._cache[index]
            # Calculate the value
            try: val = self.iterate_from(index).next()
            except StopIteration:
                raise IndexError('index out of range')
            # Update the cache
            if self._cache is not None:
                if len(self._cache) > self._cache_size:
                    self._cache.popitem() # discard random entry
                self._cache[index] = val
            # Return the value
            return val

00905     def __len__(self):
        return max(len(lst) for lst in self._lists)


00909 class LazyMappedList(Deprecated, LazyMap):
    """Use LazyMap instead."""
    def __init__(self, lst, func):
        LazyMap.__init__(self, func, lst)
        
        
00915 class LazyZip(LazyMap):
    """
    A lazy sequence whose elements are tuples, each containing the i-th 
    element from each of the argument sequences.  The returned list is 
    truncated in length to the length of the shortest argument sequence. The
    tuples are constructed lazily -- i.e., when you read a value from the
    list, C{LazyZip} will calculate that value by forming a C{tuple} from
    the i-th element of each of the argument sequences.
    
    C{LazyZip} is essentially a lazy version of the Python primitive function
    C{zip}.  In particular, the following two expressions are equivalent:

        >>> zip(sequences...)
        >>> list(LazyZip(sequences...))
            
    Lazy zips can be useful for conserving memory in cases where the argument
    sequences are particularly long.
    
    A typical example of a use case for this class is combining long sequences
    of gold standard and predicted values in a classification or tagging task
    in order to calculate accuracy.  By constructing tuples lazily and 
    avoiding the creation of an additional long sequence, memory usage can be
    significantly reduced.
    """
00939     def __init__(self, *lists):
        """
        @param lists: the underlying lists
        @type lists: C{list} of C{list}
        """
        LazyMap.__init__(self, lambda *elts: elts, *lists)

00946     def iterate_from(self, index):
        iterator = LazyMap.iterate_from(self, index)
        while index < len(self):
            yield iterator.next()
            index += 1
        return
    
00953     def __len__(self):
        return min(len(lst) for lst in self._lists)


00957 class LazyEnumerate(LazyZip):
    """
    A lazy sequence whose elements are tuples, each ontaining a count (from
    zero) and a value yielded by underlying sequence.  C{LazyEnumerate} is
    useful for obtaining an indexed list. The tuples are constructed lazily
    -- i.e., when you read a value from the list, C{LazyEnumerate} will
    calculate that value by forming a C{tuple} from the count of the i-th
    element and the i-th element of the underlying sequence.
    
    C{LazyEnumerate} is essentially a lazy version of the Python primitive
    function C{enumerate}.  In particular, the following two expressions are
    equivalent:

        >>> enumerate(sequence)
        >>> list(LazyEnumerate(sequence))
            
    Lazy enumerations can be useful for conserving memory in cases where the
    argument sequences are particularly long.
    
    A typical example of a use case for this class is obtaining an indexed
    list for a long sequence of values.  By constructing tuples lazily and 
    avoiding the creation of an additional long sequence, memory usage can be
    significantly reduced.
    """
    
00982     def __init__(self, lst):
        """
        @param lst: the underlying list
        @type lst: C{list}
        """                
        LazyZip.__init__(self, xrange(len(lst)), lst)
        

class LazyMappedList(Deprecated, LazyMap):
    """Use LazyMap instead."""
    def __init__(self, lst, func):
        LazyMap.__init__(self, func, lst)


00996 class LazyMappedChain(Deprecated, LazyConcatenation):
    """Use LazyConcatenation(LazyMap(func, lists)) instead."""
    def __init__(self, lst, func):
        LazyConcatenation.__init__(self, LazyMap(func, lst))

######################################################################
# Binary Search in a File
######################################################################

# inherited from pywordnet, by Oliver Steele
def binary_search_file(file, key, cache={}, cacheDepth=-1):
    """
    Searches through a sorted file using the binary search algorithm.

    @type  file: file
    @param file: the file to be searched through.
    @type  key: {string}
    @param key: the identifier we are searching for.
    @return: The line from the file with first word key.
    """
    
    key = key + ' '
    keylen = len(key)
    start = 0
    currentDepth = 0

    if hasattr(file, 'name'):
        end = os.stat(file.name).st_size - 1
    else:
        file.seek(0, 2)
        end = file.tell() - 1
        file.seek(0)
        
    while start < end:
        lastState = start, end
        middle = (start + end) / 2

        if cache.get(middle):
            offset, line = cache[middle]

        else:
            line = ""
            while True:
                file.seek(max(0, middle - 1))
                if middle > 0:
                    file.readline()
                offset = file.tell()
                line = file.readline()
                if line != "": break
                # at EOF; try to find start of the last line
                middle = (start + middle)/2
                if middle == end -1:
                    return None
            if currentDepth < cacheDepth:
                cache[middle] = (offset, line)
                
        if offset > end:
            assert end != middle - 1, "infinite loop"
            end = middle - 1
        elif line[:keylen] == key:
            return line
        elif line > key:
            assert end != middle - 1, "infinite loop"
            end = middle - 1
        elif line < key:
            start = offset + len(line) - 1

        currentDepth += 1
        thisState = start, end

        if lastState == thisState:
            # Detects the condition where we're searching past the end
            # of the file, which is otherwise difficult to detect
            return None

    return None

Generated by  Doxygen 1.6.0   Back to index